Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 62(3): e0010322, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315007

RESUMO

The ongoing COVID-19 pandemic necessitates cost-effective, high-throughput, and timely whole-genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses for outbreak investigations, identifying variants of concern (VoC), characterizing vaccine breakthrough infections, and public health surveillance. In addition, the enormous demand for WGS on supply chains and the resulting shortages of laboratory supplies necessitated the use of low-reagent and low-consumable methods. Here, we report an optimized library preparation method (the BCCDC cutdown method) that can be used in a high-throughput scenario, where one technologist can perform 576 library preparations (6 plates of 96 samples) over the course of one 8-hour shift. The same protocol can also be used in a rapid turnaround time scenario, from primary samples (up to 96 samples) to loading on a sequencer in an 8-hour shift. This new method uses Freed et al.'s 1,200 bp primer sets (Biol Methods Protoc 5:bpaa014, 2020, https://doi.org/10.1093/biomethods/bpaa014) and a modified and condensed Illumina DNA Prep workflow (Illumina, CA, USA). Compared to the original protocol, the application of this new method using hundreds of clinical specimens demonstrated equivalent results to the full-length DNA Prep workflow at 45% of the cost, 15% of consumables required (such as pipet tips), 25% of manual hands-on time, and 15% of on-instrument time if performing on a liquid handler, with no compromise in sequence quality. Results demonstrate that this new method is a rapid, simple, cost-effective, and high-quality SARS-CoV-2 WGS protocol. IMPORTANCE: Sequencing has played an invaluable role in the response to the COVID-19 pandemic. Ongoing work in this area, however, demands optimization of laboratory workflow to increase sequencing capacity, improve turnaround time, and reduce cost without compromising sequence quality. This report describes an optimized DNA library preparation method for improved whole-genome sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen. The workflow advantages summarized here include significant time, cost, and consumable savings, which suggest that this new method is an efficient, scalable, and pragmatic alternative for SARS-CoV-2 whole-genome sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Análise Custo-Benefício , Pandemias , Biblioteca Gênica , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Cell Rep ; 42(10): 113128, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742194

RESUMO

Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.


Assuntos
Conexinas , Microglia , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Conexinas/metabolismo , Morte Celular , Trifosfato de Adenosina/metabolismo
3.
Emerg Infect Dis ; 29(10): 1999-2007, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640374

RESUMO

In British Columbia, Canada, initial growth of the SARS-CoV-2 Delta variant was slower than that reported in other jurisdictions. Delta became the dominant variant (>50% prevalence) within ≈7-13 weeks of first detection in regions within the United Kingdom and United States. In British Columbia, it remained at <10% of weekly incident COVID-19 cases for 13 weeks after first detection on March 21, 2021, eventually reaching dominance after 17 weeks. We describe the growth of Delta variant cases in British Columbia during March 1-June 30, 2021, and apply retrospective counterfactual modeling to examine factors for the initially low COVID-19 case rate after Delta introduction, such as vaccination coverage and nonpharmaceutical interventions. Growth of COVID-19 cases in the first 3 months after Delta emergence was likely limited in British Columbia because additional nonpharmaceutical interventions were implemented to reduce levels of contact at the end of March 2021, soon after variant emergence.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Colúmbia Britânica/epidemiologia , SARS-CoV-2/genética , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/prevenção & controle
4.
Front Genet ; 14: 1138582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051600

RESUMO

The ongoing SARS-CoV-2 pandemic demonstrates the utility of real-time sequence analysis in monitoring and surveillance of pathogens. However, cost-effective sequencing requires that samples be PCR amplified and multiplexed via barcoding onto a single flow cell, resulting in challenges with maximising and balancing coverage for each sample. To address this, we developed a real-time analysis pipeline to maximise flow cell performance and optimise sequencing time and costs for any amplicon based sequencing. We extended our nanopore analysis platform MinoTour to incorporate ARTIC network bioinformatics analysis pipelines. MinoTour predicts which samples will reach sufficient coverage for downstream analysis and runs the ARTIC networks Medaka pipeline once sufficient coverage has been reached. We show that stopping a viral sequencing run earlier, at the point that sufficient data has become available, has no negative effect on subsequent down-stream analysis. A separate tool, SwordFish, is used to automate adaptive sampling on Nanopore sequencers during the sequencing run. This enables normalisation of coverage both within (amplicons) and between samples (barcodes) on barcoded sequencing runs. We show that this process enriches under-represented samples and amplicons in a library as well as reducing the time taken to obtain complete genomes without affecting the consensus sequence.

5.
Front Public Health ; 10: 915363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859775

RESUMO

Background: COVID-19 vaccination is a key public health measure in the pandemic response. The rapid evolution of SARS-CoV-2 variants introduce new groups of spike protein mutations. These new mutations are thought to aid in the evasion of vaccine-induced immunity and render vaccines less effective. However, not all spike mutations contribute equally to vaccine escape. Previous studies associate mutations with vaccine breakthrough infections (BTI), but information at the population level remains scarce. We aimed to identify spike mutations associated with SARS-CoV-2 vaccine BTI in a community setting during the emergence and predominance of the Delta-variant. Methods: This case-control study used both genomic, and epidemiological data from a provincial COVID-19 surveillance program. Analyses were stratified into two periods approximating the emergence and predominance of the Delta-variant, and restricted to primary SARS-CoV-2 infections from either unvaccinated individuals, or those infected ≥14 days after their second vaccination dose in a community setting. Each sample's spike mutations were concatenated into a unique spike mutation profile (SMP). Penalized logistic regression was used to identify spike mutations and SMPs associated with SARS-CoV-2 vaccine BTI in both time periods. Results and Discussion: This study reports population level relative risk estimates, between 2 and 4-folds, of spike mutation profiles associated with BTI during the emergence and predominance of the Delta-variant, which comprised 19,624 and 17,331 observations, respectively. The identified mutations cover multiple spike domains including the N-terminal domain (NTD), receptor binding domain (RBD), S1/S2 cleavage region, fusion peptide and heptad regions. Mutations in these different regions imply various mechanisms contribute to vaccine escape. Our profiling method identifies naturally occurring spike mutations associated with BTI, and can be applied to emerging SARS-CoV-2 variants with novel groups of spike mutations.


Assuntos
COVID-19 , Colúmbia Britânica , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Casos e Controles , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
6.
Clin Infect Dis ; 75(11): 1980-1992, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35438175

RESUMO

BACKGROUND: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada's larger provinces. METHODS: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22-47) 2021. RESULTS: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by ∼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7-8-week versus manufacturer-specified 3-4-week intervals between mRNA doses. CONCLUSIONS: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7-8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Humanos , Colúmbia Britânica/epidemiologia , Quebeque/epidemiologia , Vacinas contra COVID-19 , Eficácia de Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , RNA Mensageiro
7.
J Infect Dis ; 226(1): 485-496, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35084500

RESUMO

BACKGROUND: In British Columbia, Canada, most adults 50-69 years old became eligible for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in April 2021, with chimpanzee adenoviral vectored vaccine (ChAdOx1) restricted to ≥55-year-olds and second doses deferred ≥6 weeks to optimize single-dose coverage. METHODS: Among adults 50-69 years old, single-dose messenger RNA (mRNA) and ChAdOx1 vaccine effectiveness (VE) against SARS-CoV-2 infection and hospitalization, including variant-specific, was assessed by test-negative design between 4 April and 2 October 2021. RESULTS: Single-dose VE included 11 861 cases and 99 544 controls. Median of postvaccination follow-up was 32 days (interquartile range, 15-52 days). Alpha, Gamma, and Delta variants comprised 23%, 18%, and 56%, respectively, of genetically characterized viruses. At 21-55 days postvaccination, single-dose mRNA and ChAdOx1 VE (95% confidence interval [CI]) was 74% (71%-76%) and 59% (53%-65%) against any infection and 86% (80%-90%) and 94% (85%-97%) against hospitalization, respectively. VE (95% CI) was similar against Alpha and Gamma infections for mRNA (80% [76%-84%] and 80% [75%-84%], respectively) and ChAdOx1 (69% [60%-76%] and 66% [56%-73%], respectively). mRNA VE was lower at 63% (95% CI, 56%-69%) against Delta but 85% (95% CI, 71%-92%) against Delta-associated hospitalization (nonestimable for ChAdOx1). CONCLUSIONS: A single mRNA or ChAdOx1 vaccine dose gave important protection against SARS-CoV-2, including early variants of concern. ChAdOx1 VE was lower against infection, but 1 dose of either vaccine reduced the hospitalization risk by >85% to at least 8 weeks postvaccination. Findings inform program options, including longer dosing intervals.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Idoso , Colúmbia Britânica/epidemiologia , COVID-19/prevenção & controle , Humanos , Pessoa de Meia-Idade , RNA Mensageiro , SARS-CoV-2/genética , Eficácia de Vacinas
8.
Int J Infect Dis ; 114: 51-54, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34757201

RESUMO

Mutations in emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages can interfere with laboratory methods used to generate viral genome sequences for public health surveillance. We identified 20 mutations that are widespread in variant of concern lineages and affect widely used sequencing protocols by the ARTIC network and Freed et al. Three of these mutations disrupted sequencing of P.1 lineage specimens during a recent outbreak in British Columbia, Canada. We provide laboratory validation of protocol modifications that restored sequencing performance. The study findings indicate that genomic sequencing protocols require immediate updating to address emerging mutations. This work also suggests that routine monitoring and protocol updates will be necessary as SARS-CoV-2 continues to evolve. The bioinformatic and laboratory approaches used here provide guidance for this kind of assay maintenance.


Assuntos
COVID-19 , SARS-CoV-2 , Colúmbia Britânica , Genoma Viral/genética , Genômica , Humanos , Mutação
9.
Clin Infect Dis ; 74(7): 1158-1165, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244723

RESUMO

BACKGROUND: Randomized-controlled trials of messenger RNA (mRNA) vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) included relatively few elderly participants. We assess single-dose mRNA vaccine effectiveness (VE) in adults ≥ 70 years old in British Columbia, Canada, where second doses were deferred by up to 16 weeks and where a spring 2021 wave uniquely included codominant circulation of Alpha (B.1.1.7) and Gamma (P.1) variants of concern (VOC). METHODS: Analyses included community-dwelling adults ≥ 70 years old with specimen collection between 4 April (epidemiological week 14) and 1 May (week 17) 2021. Adjusted VE was estimated by test-negative design. Cases were reverse-transcription polymerase chain reaction (RT-PCR) test-positive for SARS-CoV-2, and controls were test-negative. Vaccine status was defined by receipt of a single-dose ≥ 21 days before specimen collection, but a range of intervals was assessed. Variant-specific VE was estimated against viruses genetically characterized as Alpha, Gamma or non-VOC lineages. RESULTS: VE analyses included 16 993 specimens: 1226 (7%) test-positive cases and 15 767 test-negative controls. Of 1131 (92%) genetically characterized viruses, 509 (45%), 314 (28%), and 276 (24%) were Alpha, Gamma, and non-VOC lineages, respectively. At 0-13 days postvaccination, VE was negligible at 14% (95% confidence interval [CI], 0-26) but increased from 43% (95% CI, 30-53) at 14-20 days to 75% (95% CI, 63-83) at 35-41 days postvaccination. VE at ≥ 21 days postvaccination was 65% (95% CI, 58-71) overall: 72% (95% CI, 58-81), 67% (95% CI, 57-75), and 61% (95% CI, 45-72) for non-VOC, Alpha, and Gamma variants, respectively. CONCLUSIONS: A single dose of mRNA vaccine reduced the risk of SARS-CoV-2 by about two-thirds in adults ≥ 70 years old, with protection only minimally reduced against Alpha and Gamma variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Idoso , Colúmbia Britânica/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , RNA Mensageiro , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
10.
mSystems ; 6(5): e0106821, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34665013

RESUMO

Wastewater-based genomic surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus shows promise to complement genomic epidemiology efforts. Multiplex tiling PCR is a desirable approach for targeted genome sequencing of SARS-CoV-2 in wastewater due to its low cost and rapid turnaround time. However, it is not clear how different multiplex tiling PCR primer schemes or wastewater sample matrices impact the resulting SARS-CoV-2 genome coverage. The objective of this work was to assess the performance of three different multiplex primer schemes, consisting of 150-bp, 400-bp, and 1,200-bp amplicons, as well as two wastewater sample matrices, influent wastewater and primary sludge, for targeted genome sequencing of SARS-CoV-2. Wastewater samples were collected weekly from five municipal wastewater treatment plants (WWTPs) in the Metro Vancouver region of British Columbia, Canada during a period of increased coronavirus disease 19 (COVID-19) case counts from February to April 2021. RNA extracted from clarified influent wastewater provided significantly higher genome coverage (breadth and median depth) than primary sludge samples across all primer schemes. Shorter amplicons appeared to be more resilient to sample RNA degradation but were hindered by greater primer pool complexity in the 150-bp scheme. The identified optimal primer scheme (400 bp) and sample matrix (influent) were capable of detecting the emergence of mutations associated with genomic variants of concern, for which the daily wastewater load significantly correlated with clinical case counts. Taken together, these results provide guidance on best practices for implementing wastewater-based genomic surveillance and demonstrate its ability to inform epidemiology efforts by detecting genomic variants of concern circulating within a geographic region. IMPORTANCE Monitoring the genomic characteristics of the SARS-CoV-2 virus circulating in a population can shed important insights into epidemiological aspects of the COVID-19 outbreak. Sequencing every clinical patient sample in a highly populous area is a difficult feat, and thus sequencing SARS-CoV-2 RNA in municipal wastewater offers great promise to augment genomic surveillance by characterizing a pooled population sample matrix, particularly during an escalating outbreak. Here, we assess different approaches and sample matrices for rapid targeted genome sequencing of SARS-CoV-2 in municipal wastewater. We demonstrate that the optimal approach is capable of detecting the emergence of SARS-CoV-2 genomic variants of concern, with strong correlations to clinical case data in the province of British Columbia. These results provide guidance on best practices on, as well as further support for, the application of wastewater genomic surveillance as a tool to augment current genomic epidemiology efforts.

11.
Emerg Infect Dis ; 27(11): 2802-2809, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34388358

RESUMO

Several severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) emerged in late 2020; lineage B.1.1.7 initially dominated globally. However, lineages B.1.351 and P.1 represent potentially greater risk for transmission and immune escape. In British Columbia, Canada, B.1.1.7 and B.1.351 were first identified in December 2020 and P.1 in February 2021. We combined quantitative PCR and whole-genome sequencing to assess relative contribution of VOCs in nearly 67,000 infections during the first 16 weeks of 2021 in British Columbia. B.1.1.7 accounted for <10% of screened or sequenced specimens early on, increasing to >50% by week 8. P.1 accounted for <10% until week 10, increased rapidly to peak at week 12, and by week 13 codominated within 10% of rates of B.1.1.7. B.1.351 was a minority throughout. This rapid expansion of P.1 but suppression of B.1.351 expands our understanding of population-level VOC patterns and might provide clues to fitness determinants for emerging VOCs.


Assuntos
COVID-19 , SARS-CoV-2 , Colúmbia Britânica/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real
12.
bioRxiv ; 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32908977

RESUMO

Genome sequencing has been widely deployed to study the evolution of SARS-CoV-2 with more than 90,000 genome sequences uploaded to the GISAID database. We published a method for SARS-CoV-2 genome sequencing (https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w) online on January 22, 2020. This approach has rapidly become the most popular method for sequencing SARS-CoV-2 due to its simplicity and cost-effectiveness. Here we present improvements to the original protocol: i) an updated primer scheme with 22 additional primers to improve genome coverage, ii) a streamlined library preparation workflow which improves demultiplexing rate for up to 96 samples and reduces hands-on time by several hours and iii) cost savings which bring the reagent cost down to £10 per sample making it practical for individual labs to sequence thousands of SARS-CoV-2 genomes to support national and international genomic epidemiology efforts.

14.
Gigascience ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32520351

RESUMO

BACKGROUND: Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models. But such ecogenomic studies have not been applied on a broad "aquascape" scale, and few if any have applied the newest nanopore technology. RESULTS: We investigated the metagenomes of 11 rivers across 3 continents using MinION nanopore sequencing, a portable platform that could be useful for future global river monitoring. Up to 10 Gb of data per run were generated with average read lengths of 3.4 kb. Diversity and diagnosis of river function potential was accomplished with 0.5-1.0 ⋅ 106 long reads. Our observations for 7 of the 11 rivers conformed to other river-omic findings, and we exposed previously unrecognized microbial biodiversity in the other 4 rivers. CONCLUSIONS: Deeper understanding that emerged is that river microbial consortia and the ecological functions they fulfil did not align with geographic location but instead implicated ecological responses of microbes to urban and other anthropogenic effects, and that changes in taxa manifested over a very short geographic space.


Assuntos
Metagenoma , Metagenômica/métodos , Consórcios Microbianos , Microbiota , Plâncton/genética , Biodiversidade , Sequenciamento por Nanoporos , Rios/microbiologia , Microbiologia da Água
16.
Nat Methods ; 16(12): 1297-1305, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740818

RESUMO

High-throughput complementary DNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies. Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using thirty MinION flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read-length quality. We combined these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions to identify 33,984 plausible RNA isoforms. We describe strategies for assessing 3' poly(A) tail length, base modifications and transcript haplotypes.


Assuntos
Sequenciamento por Nanoporos/métodos , Poli A/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Células Cultivadas , Humanos
17.
Mol Pain ; 14: 1744806918765806, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29580153

RESUMO

Background Following peripheral nerve chronic constriction injury, the accumulation of the α2δ-1 auxiliary subunit of voltage-gated Ca2+ channels in primary afferent terminals contributes to the onset of neuropathic pain. Overexpression of α2δ-1 in Xenopus oocytes increases the opening properties of Cav1.2 L-type channels and allows Ca2+ influx at physiological membrane potentials. We therefore posited that L-type channels play a role in neurotransmitter release in the superficial dorsal horn in the chronic constriction injury model of neuropathic pain. Results Whole-cell recording from lamina II neurons from rats, subject to sciatic chronic constriction injury, showed that the L-type Ca2+ channel blocker, nitrendipine (2 µM) reduced the frequency of spontaneous excitatory postsynaptic currents. Nitrendipine had little or no effect on spontaneous excitatory postsynaptic current frequency in neurons from sham-operated animals. To determine whether α2δ-1 is involved in upregulating function of Cav1.2 L-type channels, we tested the effect of the α2δ-1 ligand, gabapentin (100 µM) on currents recorded from HEK293F cells expressing Cav1.2/ß4/α2δ-1 channels and found a significant decrease in peak amplitude with no effect on control Cav1.2/ß4/α2δ-3 expressing cells. In PC-12 cells, gabapentin also significantly reduced the endogenous dihydropyridine-sensitive calcium current. In lamina II, gabapentin reduced spontaneous excitatory postsynaptic current frequency in neurons from animals subject to chronic constriction injury but not in those from sham-operated animals. Intraperitoneal injection of 5 mg/kg nitrendipine increased paw withdrawal threshold in animals subject to chronic constriction injury. Conclusion We suggest that L-type channels show an increased contribution to synaptic transmission in lamina II dorsal horn following peripheral nerve injury. The effect of gabapentin on Cav1.2 via α2δ-1 may contribute to its anti-allodynic action.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Subunidades Proteicas/metabolismo , Substância Gelatinosa/metabolismo , Transmissão Sináptica , Aminas/farmacologia , Animais , Bovinos , Constrição Patológica , Ácidos Cicloexanocarboxílicos/farmacologia , Di-Hidropiridinas/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Gabapentina , Células HEK293 , Humanos , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Masculino , Nitrendipino/farmacologia , Células PC12 , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Xenopus , Ácido gama-Aminobutírico/farmacologia
18.
Nat Biotechnol ; 36(4): 338-345, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29431738

RESUMO

We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ∼30× theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. De novo assembly of nanopore reads alone yielded a contiguous assembly (NG50 ∼3 Mb). We developed a protocol to generate ultra-long reads (N50 > 100 kb, read lengths up to 882 kb). Incorporating an additional 5× coverage of these ultra-long reads more than doubled the assembly contiguity (NG50 ∼6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4-Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length, and closure of gaps in the reference human genome assembly GRCh38.


Assuntos
Genoma Humano/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Humanos , Nanoporos
19.
Epilepsia ; 59(4): 778-791, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29468672

RESUMO

OBJECTIVE: Genetic alterations have been identified in the CACNA1H gene, encoding the CaV 3.2 T-type calcium channel in patients with absence epilepsy, yet the precise mechanisms relating to seizure propagation and spike-wave-discharge (SWD) pacemaking remain unknown. Neurons of the thalamic reticular nucleus (TRN) express high levels of CaV 3.2 calcium channels, and we investigated whether a gain-of-function mutation in the Cacna1h gene in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) contributes to seizure propagation and pacemaking in the TRN. METHODS: Pathophysiological contributions of CaV 3.2 calcium channels to burst firing and absence seizures were assessed in vitro using acute brain slice electrophysiology and quantitative real-time polymerase chain reaction (PCR) and in vivo using free-moving electrocorticography recordings. RESULTS: TRN neurons from GAERS display sustained oscillatory burst-firing that is both age- and frequency-dependent, occurring only in the frequencies overlapping with GAERS SWDs and correlating with the expression of a CaV 3.2 mutation-sensitive splice variant. In vivo knock-down of CaV 3.2 using direct thalamic injection of lipid nanoparticles containing CaV 3.2 dicer small interfering (Dsi) RNA normalized TRN burst-firing, and in free-moving GAERS significantly shortened seizures. SIGNIFICANCE: This supports a role for TRN CaV 3.2 T-type channels in propagating thalamocortical network seizures and setting the pacemaking frequency of SWDs.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo T/fisiologia , Epilepsia Tipo Ausência/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Tálamo/fisiopatologia , Animais , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/genética , Feminino , Masculino , Ratos , Ratos Transgênicos , Convulsões/genética
20.
Genome Res ; 28(2): 266-274, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29273626

RESUMO

Advances in long-read single molecule sequencing have opened new possibilities for 'benchtop' whole-genome sequencing. The Oxford Nanopore Technologies MinION is a portable device that uses nanopore technology that can directly sequence DNA molecules. MinION single molecule long sequence reads are well suited for de novo assembly of complex genomes as they facilitate the construction of highly contiguous physical genome maps obviating the need for labor-intensive physical genome mapping. Long sequence reads can also be used to delineate complex chromosomal rearrangements, such as those that occur in tumor cells, that can confound analysis using short reads. Here, we assessed MinION long-read-derived sequences for feasibility concerning: (1) the de novo assembly of a large complex genome, and (2) the elucidation of complex rearrangements. The genomes of two Caenorhabditis elegans strains, a wild-type strain and a strain containing two complex rearrangements, were sequenced with MinION. Up to 42-fold coverage was obtained from a single flow cell, and the best pooled data assembly produced a highly contiguous wild-type C. elegans genome containing 48 contigs (N50 contig length = 3.99 Mb) covering >99% of the 100,286,401-base reference genome. Further, the MinION-derived genome assembly expanded the C. elegans reference genome by >2 Mb due to a more accurate determination of repetitive sequence elements and assembled the complete genomes of two co-extracted bacteria. MinION long-read sequence data also facilitated the elucidation of complex rearrangements in a mutagenized strain. The sequence accuracy of the MinION long-read contigs (∼98%) was improved using Illumina-derived sequence data to polish the final genome assembly to 99.8% nucleotide accuracy when compared to the reference assembly.


Assuntos
Caenorhabditis elegans/genética , Genoma/genética , Anotação de Sequência Molecular , Animais , Mapeamento Cromossômico , Rearranjo Gênico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetitivas de Ácido Nucleico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...